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Experimental problems with classic GLM/SPM

e (Complex sensory and cognitive processes must be reduced to
fit into designs that can be handled by an SPM approach

e Often this means simple factorial designs






Methodological problems with classic GLM/SPM

e Goodness-of-fit approach based on inferential statistics
o Inferences are based on the significance of the estimated model parameters
o Effect estimates are largely ignored (Chen, Taylor, & Cox, 2017)
m statistical significance does not imply practical significance



Methodological problems with classic GLM/SPM

e Goodness-of-fit approach based on inferential statistics
o Inferences are based on the significance of the estimated model parameters
o Effect estimates are largely ignored (Chen, Taylor, & Cox, 2017)
m statistical significance does not imply practical significance

e No measures of whether the results (and model parameters) will generalize to new
conditions or datasets
o models are fit in a single dataset (overfitting)
o variance due to the (small number of) stimuli used is largely unaccounted for
(stimulus-as-fixed-effect fallacy; Westfall, Nichols, & Yarkoni, 2017)



Methodological problems with classic GLM/SPM

e C(lassic GLM/SPM provides little guarantee that

o the experimental results will replicate
(Szucs & loannidis, 2017)

o the model tested will generalize
(Yarkoni, 2019; Westfall, Nichols, & Yarkoni, 2017)



A different approach: Voxelwise Modeling

e Respect the complexity of the real world (do not reduce the elephant!)

e Avoid the goodness-of-fit approach and null-hypothesis statistical testing
(data modeling culture; Breiman, 2001)

e Use methods from machine learning and data science
(algorithmic modeling culture; Breiman, 2001)

o Create models that accurately predict brain activity

o Estimate model prediction accuracy on an independent dataset
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Example: Huth et al., 2016

a Voxel-wise model estimation
Naturally spoken stories were played for 7 subjects
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Example: Huth et al., 2016
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Example: Huth et al., 2016
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Example: Deniz et al., 2019
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Example: Deniz et al., 2019
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Example: Deniz et al., 2019
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Example: Deniz et al., 2019

a Listening predicting Listening
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How to fit voxelwise models?

e Feature spaces describing the stimulus are high-dimensional

o More dimensions than the number of samples available in the training set
e There is a high risk of overfitting: failure to generalize

e \We need to use techniques from machine learning and data science to fit
voxelwise models

o Regularized regression

o Cross-validation



Regularized linear regression
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Multivariate linear regression
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Multivariate linear regression
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Multivariate linear regression
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Multivariate linear regression
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Multivariate linear regression - correlated features
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Multivariate linear regression - correlated features
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Multivariate linear regression - collinearity
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Multivariate linear regression - regularization (ridge)
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Multivariate linear regression - regularization (ridge)
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Ridge regression

Definition
Linear regression w* =argmin_ ||y - Xw]|?

Ridge regression w* = argmin_ [ly - Xw||* + « ||w]||*



Ridge regression

Definition
Linear regression
Ridge regression
Analytical solution
Linear regression

Ridge regression

& : 2
w* =argmin_ ||y - Xw/|

w* = argmin, [ly - Xwl||* + o [|w]|*

w* = (XTX)" XTy
w* = (XT™X + ald)?! X'y



Ridge regression

Benefits
More robust with correlated features
Fix collinearity issues
Fix the case n_features > n_samples (underdetermined system)

Drawback
Unknown hyperparameter e (theoretical link to the signal-to-noise ratio)

Solution
Cross-validation



Cross-validation
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Cross-validation
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Cross-validation
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Hyperparameter path
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Cross-validation - more folds

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Split1 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

split1 | Fold 1 Fold 2 Split 2 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split2 | Fold1l || Fold2 Split3 | Fold1l || Fold2 | Fold3 | Fold4 | Fold5

Split4 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split5 | Fold 1 Fold 2 Fold 3 Fold 4 Fold 5




Cross-validation - hyperparameter selection

for each hyperparameter candidate
for each split of the data
fit a model on the training folds

score the fitted model on the validation fold

average scores over all splits
select best hyperparameter

Example
Selection of « in ridge regression

Split1
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Split 3
Split 4

Split 5
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Cross-validation - model selection

for each model candidate
for each split of the data
fit a model on the training folds

score the fitted model on the validation fold

average scores over all splits
select best model

Example
Ridge regression versus Lasso

Split1
Split 2
Split 3
Split 4

Split5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
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Fold 1 Fold 2 Fold 3 Fold 4 Fold 5




10 1+

08 1

0.6 4

044

021

0.0 1

Model selection example - Time delays

To model the hemodynamic response function
we copy all the features with different time delays
but how many delays is optimal ?

Hemodynamic response function Hemodynamic response function
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Model selection example - Time delays

To model the hemodynamic response function
we copy all the features with different time delays
but how many delays is optimal ?
Method: cross-validation
Answer: 4 (for this dataset)

Hemodynamic response function

Hemodynamic response function
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Generalization to new data

Split1
Split 2
Split 3
Split 4

Split5

All Data
Training data Test data
Fold1l || Fold2 || Fold3 || Fold4 || Fold5 | \
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
> Finding Parameters
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Foldl1 || Fold2 | Fold3 | Fold4 | Fold5 |/

Final evaluation {

Test data




Generalization to new data

Generalization power
Estimated with prediction on a held-out test dataset

Generalization lower-bound (i.e. significance)
Estimated with permutations

Generalization upper-bound (i.e. explainable variance)
Estimated with repeats of the same stimulus



Explainable variance

Voxel with large explainable variance (0.74)
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Tutorials

https://github.com/gallantlab/voxelwise_tutorials
tutorials in python, notebooks style
voxelwise modeling helper functions

https://github.com/gallantlab/himalaya
python package, scikit-learn API, CPU/GPU
ridge-regression-like models for large number of voxels

(both repositories are still private for now)

send me an email if you want an early access tomdlt@berkeley.edu
feedback much appreciated !
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Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8
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Advanced Voxelwise Modeling i gﬁ— =
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e use very large number of features
extracted from deep neural networks

e partition the explained variance over
multiple feature spaces (with banded
ridge regression)

e separate features over different
timescales




Tutorials

(Fit a ridge model with wordnet features)



Association is not prediction

[Statistical Modeling: The Two Cultures, Breiman, 2001, Statistical science]
[Statistics versus machine learning, Bzdok et al., 2018, Nature Method]

“In the unfolding era of big data in medicine, the phrase “association is not
prediction” should become as important as “correlation is not causation”.”
[Bzdok et al., 2021, JAMA Psychiatry]



1 - Voxelwise modeling vs classical fMRI analysis

Comparison

Classical: Block design, linear regression, t-test

VM: Feature extraction, still a linear regression (!), but test set predictions

Main difference: association/inference vs prediction - (old debate)
(inference = interpretable) vs (prediction = black box) ?

no, we can still use linear models (= random forest or neural networks)
Prediction is about replicability, generalization to new settings

association can be highly dependent to particular subjects, cross-val less
Prediction estimates the effect size (explained variance)

large significance (e.g. with many subjects) != large effect
Test set predictions largely reduces overfitting

with enough features, one can explains 100% variance within set

even with linear models



2 - VVoxelwise modeling

Regularized regression
Reduces collinearity overfitting
Reduces n_features > n_samples overfitting
Handles different SNR per voxel
Model selection with cross-validation
hyperparameter selection - example of ridge regularization
model selection - example of the number of delays
Test set generalization as a final score
generalization lower bound (ie significance) with shuffling
generalization upper-bound (ie explainable variance) with repeats
Interpreting feature weights
feature importance
PCA
Tutorials



