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Kanwisher, 2017



Experimental problems with classic GLM/SPM

● Complex sensory and cognitive processes must be reduced to 
fit into designs that can be handled by an SPM approach

● Often this means simple factorial designs





Methodological problems with classic GLM/SPM

● Goodness-of-fit approach based on inferential statistics
○ Inferences are based on the significance of the estimated model parameters
○ Effect estimates are largely ignored (Chen, Taylor, & Cox, 2017)

■ statistical significance does not imply practical significance

● No measures of whether the results (and model parameters) will generalize to new 
conditions or datasets
○ models are fit in a single dataset (overfitting)
○ variance due to the (small number of) stimuli used is largely unaccounted for 

(stimulus-as-fixed-effect fallacy; Westfall, Nichols, & Yarkoni, 2017)
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Methodological problems with classic GLM/SPM

● Classic GLM/SPM provides little guarantee that

○ the experimental results will replicate 
(Szucs & Ioannidis, 2017)

○ the model tested will generalize 
(Yarkoni, 2019; Westfall, Nichols, & Yarkoni, 2017)



A different approach: Voxelwise Modeling

● Respect the complexity of the real world (do not reduce the elephant!)

● Avoid the goodness-of-fit approach and null-hypothesis statistical testing 
(data modeling culture; Breiman, 2001)

● Use methods from machine learning and data science 
(algorithmic modeling culture; Breiman, 2001)

○ Create models that accurately predict brain activity

○ Estimate model prediction accuracy on an independent dataset
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How to fit voxelwise models?

● Feature spaces describing the stimulus are high-dimensional

○ More dimensions than the number of samples available in the training set

● There is a high risk of overfitting: failure to generalize

● We need to use techniques from machine learning and data science to fit 
voxelwise models

○ Regularized regression

○ Cross-validation



Regularized linear regression



Linear regression



Linear regression



Linear regression



Linear regression



Multivariate linear regression



Multivariate linear regression



Multivariate linear regression



Multivariate linear regression



Multivariate linear regression - correlated features



Multivariate linear regression - correlated features



Multivariate linear regression - collinearity



Multivariate linear regression - regularization (ridge)
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Ridge regression

Definition

Linear regression w* = argminw ||y - Xw||2 

Ridge regression w* = argminw ||y - Xw||2 + 𝛼 ||w||2 



Ridge regression

Definition

Linear regression w* = argminw ||y - Xw||2 

Ridge regression w* = argminw ||y - Xw||2 + 𝛼 ||w||2 

Analytical solution

Linear regression w* = (XTX)-1   XTy λ0
-1

Ridge regression w* = (XTX + 𝛼Id)-1   XTy (λ0+𝛼)-1



Ridge regression

Benefits
More robust with correlated features 
Fix collinearity issues
Fix the case n_features > n_samples (underdetermined system)

Drawback
Unknown hyperparameter 𝛼 (theoretical link to the signal-to-noise ratio)

Solution
Cross-validation
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Cross-validation - more folds



Cross-validation - hyperparameter selection

for each hyperparameter candidate
for each split of the data

fit a model on the training folds
score the fitted model on the validation fold

average scores over all splits
select best hyperparameter

Example
Selection of 𝛼 in ridge regression



Cross-validation - model selection

for each model candidate
for each split of the data

fit a model on the training folds
score the fitted model on the validation fold

average scores over all splits
select best model

Example
Ridge regression versus Lasso



Model selection example - Time delays

To model the hemodynamic response function
we copy all the features with different time delays

but how many delays is optimal ?



Model selection example - Time delays

To model the hemodynamic response function
we copy all the features with different time delays

but how many delays is optimal ?
Method: cross-validation

Answer: 4 (for this dataset)
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Generalization to new data

Generalization power
Estimated with prediction on a held-out test dataset

Generalization lower-bound (i.e. significance)
Estimated with permutations

Generalization upper-bound (i.e. explainable variance)
Estimated with repeats of the same stimulus



Explainable variance



Tutorials

https://github.com/gallantlab/voxelwise_tutorials
tutorials in python, notebooks style
voxelwise modeling helper functions

https://github.com/gallantlab/himalaya
python package, scikit-learn API, CPU/GPU
ridge-regression-like models for large number of voxels

(both repositories are still private for now)
send me an email if you want an early access tomdlt@berkeley.edu
feedback much appreciated !

mailto:tomdlt@berkeley.edu


Advanced Voxelwise Modeling

Advanced use of the framework include:

● use very large number of features 
extracted from deep neural networks

● partition the explained variance over 
multiple feature spaces (with banded 
ridge regression)

● separate features over different 
timescales

● ...



Tutorials
(Fit a ridge model with wordnet features)



Association is not prediction

[Statistical Modeling: The Two Cultures, Breiman, 2001, Statistical science]
[Statistics versus machine learning, Bzdok et al., 2018, Nature Method]

“In the unfolding era of big data in medicine, the phrase “association is not 
prediction” should become as important as “correlation is not causation”.”
[Bzdok et al., 2021, JAMA Psychiatry]



1 - Voxelwise modeling vs classical fMRI analysis

Comparison
Classical: Block design, linear regression, t-test
VM: Feature extraction, still a linear regression (!), but test set predictions
Main difference: association/inference vs prediction - (old debate)

(inference = interpretable) vs (prediction = black box) ?
no, we can still use linear models (!= random forest or neural networks)

Prediction is about replicability, generalization to new settings
association can be highly dependent to particular subjects, cross-val less

Prediction estimates the effect size (explained variance)
large significance (e.g. with many subjects) != large effect

Test set predictions largely reduces overfitting
with enough features, one can explains 100% variance within set

even with linear models



2 - Voxelwise modeling

Regularized regression
Reduces collinearity overfitting
Reduces n_features > n_samples overfitting
Handles different SNR per voxel

Model selection with cross-validation
hyperparameter selection - example of ridge regularization
model selection - example of the number of delays

Test set generalization as a final score
generalization lower bound (ie significance) with shuffling
generalization upper-bound (ie explainable variance) with repeats

Interpreting feature weights
feature importance
PCA

Tutorials


